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Estimation of the Bistable Zone
for Machining Operations for the
Case of a Distributed Cutting-
Force Model
Regenerative machine tool chatter is investigated for a single-degree-of-freedom model
of turning processes. The cutting force is modeled as the resultant of a force system dis-
tributed along the rake face of the tool, whose magnitude is a nonlinear function of the
chip thickness. Thus, the process is described by a nonlinear delay-differential equation,
where a short distributed delay is superimposed on the regenerative point delay. The cor-
responding stability lobe diagrams are computed and are shown numerically that a sub-
critical Hopf bifurcation occurs along the stability boundaries for realistic cutting-force
distributions. Therefore, a bistable region exists near the stability boundaries, where
large-amplitude vibrations (chatter) may arise for large perturbations. Analytical formu-
las are obtained to estimate the size of the bistable region based on center manifold
reduction and normal form calculations for the governing distributed-delay equation.
The locally and globally stable parameter regions are computed numerically as well
using the continuation algorithm implemented in DDE-BIFTOOL. The results can be consid-
ered as an extension of the bifurcation analysis of machining operations with point delay.
[DOI: 10.1115/1.4032443]
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1 Introduction

Suppressing or avoiding harmful vibrations (chatter) during
machining is very important in terms of increasing the accuracy
and productivity of metal cutting processes. Machine tool chatter
has many unfavorable effects: it reduces the surface quality, limits
productivity, increases tool wear, produces noise, and may even
damage the tool. One of the most accepted explanations for
machine tool chatter is the so-called surface regeneration effect
[1,2]: the machined surface becomes wavy due to the relative
vibrations between the tool and the workpiece, and the surface
waviness excites the oscillations of the machine tool-workpiece
system in the subsequent cut. Hence, the surface waviness is
regenerated during consecutive cuts and vibrations amplify in a
self-excited manner. This phenomenon can be described by delay-
differential equations. Chatter corresponds to a large-amplitude
oscillating solution of this equation. Based on the stability analy-
sis of the stationary motion, so-called stability lobe diagrams can
be created, which identify the chatter-free parameter domains on
the plane of the spindle speed and the depth of cut. These stability
charts help in the choice of technological parameters associated
with optimal material removal rate.

In this paper, we present stability lobe diagrams of orthogonal
turning operations. According to the experimental results, see,
e.g., Refs. [3–5], the stability lobes tend to shift upward at low
spindle speeds. One possible explanation for this phenomenon is
the concept of process damping: the increased stability is due to
an additional damping force inversely proportional to the spindle
speed. According to Refs. [3–6], this additional damping force
originates from the interference of the tool flank with the wavy
surface of the workpiece. According to the model described in

Ref. [6], this force is also due to the dependence of the instantane-
ous chip thickness on the vibration velocity of the cutting tool. An
alternative explanation of the same phenomenon is the so-called
short regenerative effect [7,8]: the interface between the tool and
the chip is represented by a finite contact surface, and the cutting
force is modeled as the resultant of a force system distributed
along the rake face of the tool. Since the chip needs a certain
amount of time to slip along the tool, an additional (short) distrib-
uted delay is introduced in the model equations. Although the dis-
tributed delay is significantly shorter than the regenerative delay,
it may result in qualitative changes in the stability lobe diagrams.
Thus, the change in the stability properties at low spindle speeds
can be described by a multiscale mechanism: by the interplay of a
large point delay and the short distributed delay.

In this paper, we extend the model of Ref. [7] and investigate
the short regenerative effect for orthogonal cutting taking the non-
linearity of the cutting-force characteristics into account. Section
2 describes the investigated mechanical model and derives the
governing delay-differential equation. Section 3 explains the
results of the linear stability analysis and shows the occurrence of
a Hopf bifurcation at the stability boundaries. In Sec. 4, center
manifold reduction and normal form calculations are carried out
to estimate the amplitude and stability of the periodic orbit arising
from the Hopf bifurcation. Section 5 shows that a bistable region
exists near the stability boundaries, where two stable solutions,
stationary cutting and large-amplitude chatter coexist. Here, an
analytical estimate is given for the size of the bistable region,
which is also determined numerically in Sec. 6 using DDE-BIFTOOL

[9,10]. The main results are summarized in Sec. 7.

2 Mechanical Model

The single-degree-of-freedom model of turning operations
shown in Fig. 1 is investigated. This model with linear cutting-
force expression has already been investigated in Ref. [7]. Now
we extend the model of Ref. [7] considering a nonlinear cutting-

Contributed by the Design Engineering Division of ASME for publication in the
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received July 19,
2015; final manuscript received December 30, 2015; published online February 3,
2016. Assoc. Editor: Stefano Lenci.

Journal of Computational and Nonlinear Dynamics SEPTEMBER 2016, Vol. 11 / 051008-1
Copyright VC 2016 by ASME

Downloaded From: http://computationalnonlinear.asmedigitalcollection.asme.org/ on 02/05/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



force characteristics. The differential equation governing the tool
motion assumes the form

m€xðtÞ þ c _xðtÞ þ kxðtÞ ¼ FxðtÞ (1)

where m, c, and k are the modal mass, damping, and stiffness
parameters, respectively, and Fx(t) is the x-directional cutting-
force component acting on the tool.

2.1 Cutting-Force Models. We follow the model of Ref. [7],
where the linear stability of cutting processes with distributed cut-
ting force was analyzed. We model the cutting force Fx(t) as the
resultant of a force system Px(t, s) distributed along the rake face
of the tool on the chip-tool contact region of size l (cf. Fig. 1). We
use the local coordinate s � [�l, 0] to describe the cutting-force
distribution, and assume that Px(t, s) can be decomposed into a
time-dependent magnitude FT

x ðt; sÞ and a time-independent weight
function W(s)

FxðtÞ ¼
ð0

�l

Pxðt; sÞds ¼
ð0

�l

FT
x ðt; sÞWðsÞds (2)

This assumption was verified experimentally for stable stationary
cutting using a split-tool [11,12] and using a sapphire tool [13].
We also assume that this decomposition is valid in the case of
small perturbations around the stationary cutting.

Furthermore, we assume that the chip slips along the rake face
of the tool with the constant cutting speed v, which can be
expressed in terms of the workpiece diameter D and the angular
velocity X of the workpiece: v¼XD/2. Hence, we introduce the
local temporal coordinate h¼ s/v, h � [�r, 0], and rewrite Eq. (2)
in the form

FxðtÞ ¼
ð0

�r
FT

x ðt; vhÞwðhÞdh (3)

where r¼ l/v is the time it takes for a given particle of the chip to
travel the distance l, and the weight function w(h)¼ vW(vh) char-
acterizing the shape of force distribution along the rake face is
normalized so that

ð0

�r
wðhÞdh ¼ 1 (4)

The magnitude FT
x ðt; vhÞ of the cutting-force distribution is

related to the uncut chip thickness h(t, h) by the cutting-force
characteristics. The two most widely accepted characteristics are
the power law (or Taylor force) [14] and the cubic characteristics
(or Tobias force) [15], but other functions are also used, see Ref.
[16] and the references therein. The Taylor force can be given in
the form

FTaylor
x ðt; vhÞ ¼ Kaphqðt; hÞ if hðt; hÞ � 0

0 if hðt; hÞ < 0

�
(5)

where K is the measured cutting coefficient, q¼ 3/4 is the
cutting exponent, ap is the chip width. The Tobias force expres-
sion reads

FTobias
x ðt;vhÞ¼ apðq1hðt;hÞþq2h2ðt;hÞþq3h3ðt;hÞÞ ifhðt;hÞ�0

0 ifhðt;hÞ<0

(

(6)

where the following constants were identified in the
experiments reported in Ref. [15] for a milling tool of four
teeth: q1 ¼ 6:1096� 109 N=m2; q2 ¼ �5:41416� 1013 N=m3, and
q3 ¼ 2:03769� 1017 N=m4.

The two force characteristics can be seen in Fig. 2. Both func-
tions are nonlinear and monotonously increasing for positive chip
thickness h(t, h)> 0, and are zero for negative chip thickness h(t,
h)< 0, that is, when the tool loses contact with the workpiece dur-
ing large-amplitude chatter. In this work, however, we exclude the
latter case and assume h(t, h)� 0 during the entire machining
operation.

2.2 Instantaneous Chip Thickness. According to the theory
of regenerative machine tool vibrations, the instantaneous chip
thickness h(t, h) can be given as a function of the tool position at
the actual and the previous cut

hðt; hÞ ¼ h0 þ xðt� sþ hÞ � xðtþ hÞ ; h 2 ½�r; 0� (7)

where h0 is the prescribed (mean) chip thickness and s is the
regenerative delay, which now equals the rotational period:
s¼ 2p/X. Note that the argument of the tool position is shifted by
h to account for the short time the chip needs to slip along the
rake face from the tip to the position s.

2.3 Cutting-Force Distribution. The shape w(h) of the
cutting-force distribution can be determined from the literature on
normal and shear stress distributions along the chip–tool interface,
see Refs. [17–19] and the references therein. In our model, we use
the x-directional component of the cutting force, which, in case of
zero rake angle, is the resultant of the shear stress. According to
Refs. [6,11,12,20,21], the shear stress S has a plateau near the tool
tip and then decays to zero at the end of contact, see Fig. 3(a).
Whereas in Refs. [13,22], it was shown that the shear stress S
increases from a small value at the tip to a maximum Smax, and
then decays, cf. Fig. 3(b).

Since the majority of the literature describes the shear stress
using the plateau-and-decay distribution, we investigate the distri-
bution of Fig. 3(a), where chip–tool interface consists of a sticking
region with constant shear stress and a sliding region with decay-
ing stresses. Accordingly, we approximate the shape of force dis-
tribution by

Fig. 1 Single-degree-of-freedom model of turning operations
with distributed cutting force

Fig. 2 Force characteristics of two different cutting-force mod-
els: Taylor force (a) and Tobias force (b)
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w hð Þ ¼

1

r
1� e�aþ1

2� aþ 1ð Þe�aþ1
if h 2 �ar; 0½ �

1

r
1� eh=rþ1

2� aþ 1ð Þe�aþ1
if h 2 �r;�ar½ Þ

8>>><
>>>:

(8)

where a¼ ls/l is the sticking length to contact length ratio. This
formula is a suitable approximation of the usual force distributions
with a reasonable number of parameters. According to the experi-
ments reported in Refs. [11,12,20,23], a¼ 0.3–0.6. Note that w(h)
in Eq. (8) satisfies condition (4).

It is important to emphasize that the magnitude (5) and (6) and
the shape (8) of the cutting-force distribution also depends on the
spindle speed X. This dependency is not included in Eqs. (5), (6)
and (8). Thus, our model does not include phenomena such as
built-up edge formation and is therefore valid only for quasi-
stationary changes in the spindle speed or in narrow spindle speed
ranges where the contact conditions do not vary significantly.
Wide spindle speed ranges can be analyzed by repeatedly modify-
ing the parameters in Eqs. (5), (6) and (8) according to the spindle
speed. Furthermore, our model assumes constant sliding speed v
along the rake face. Nonuniform sliding speeds can also be mod-
eled by scaling the kernel function according to v.

2.4 Third-Order Form of the Equation of Motion. Equa-
Equation (1) can be divided by m and written as

€x tð Þ þ 2fxn _x tð Þ þ x2
nx tð Þ ¼ 1

m
Fx tð Þ (9)

where xn ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the natural angular frequency of the

undamped system and f ¼ c=ð2
ffiffiffiffiffiffi
km
p

Þ is the damping ratio. Note
that Eq. (9) is nonlinear in x through Fx(t). The chatter-free
stationary cutting is associated with the equilibrium

xðtÞ � x0 ¼ F0=ðmx2
nÞ, where F0 ¼ Kaphq

0 for the Taylor and

F0 ¼ apðq1h0 þ q2h2
0 þ q3h3

0Þ for the Tobias force expression.
In order to investigate machine tool chatter, we shift our coordi-

nate to the equilibrium and use the perturbation n(t)¼ x(t)� x0.
The instantaneous chip thickness expressed in terms of n(t) reads

hðt; hÞ ¼ h0 þ nðt� sþ hÞ � nðtþ hÞ ; h 2 ½�r; 0� (10)

whereas the equation of motion becomes

€n tð Þ þ 2fxn
_n tð Þ þ x2

nn tð Þ ¼ 1

m

ð0

�r
DFT

x t; vhð Þw hð Þdh (11)

Here, DFT
x ðt; vhÞ ¼ FT

x ðt; vhÞ � F0 denotes the variation of the
cutting-force magnitude, which can be approximated by the third-
order polynomial

DFT
x ðt; vhÞ � k1ðnðt� sþ hÞ � nðtþ hÞÞ

þ k2ðnðt� sþ hÞ � nðtþ hÞÞ2

þ k3ðnðt� sþ hÞ � nðtþ hÞÞ3 ; h 2 ½�r; 0�
(12)

In the case of the Taylor force, we get this polynomial by the Tay-
lor expansion of Eq. (5) up to third order with respect to h(t, h)
around h0. The corresponding coefficients are

k1 ¼
3

4
Kaph

�1=4
0 ; k2 ¼ �

1

8h0

k1; k3 ¼
5

96h2
0

k1 (13)

For the Tobias force, substitution of Eq. (10) into Eq. (6) yields
the cubic polynomial form (12) without approximation. Here, the
coefficients are

k1 ¼ apðq1 þ 2q2h0 þ 3q3h2
0Þ

k2 ¼ apðq2 þ 3q3h0Þ
k3 ¼ apq3

(14)

Note that the third order form is required for the subsequent bifur-
cation analysis.

Based on Eqs. (11) and (12), the tool motion is governed by an
autonomous nonlinear differential equation with distributed delay.
The kernel w(h) of the distributed delay term originates in the shape
of force distribution along the tool’s rake face. The distributed delay
is of length r, and is superimposed on the regenerative point delay s.
In this study, the ratio of the two delays is assumed to be constant

r ¼ es (15)

Note that the ratio e¼ l/(Dp) and hence is equivalent to the ratio
of the contact length l and the perimeter Dp of the workpiece,
since r¼ l/v, v¼XD/2, and s¼ 2p/X. Therefore, e can also be
determined during stress distribution measurements along the rake
face. According to Refs. [11,12], the ratio e typically ranges
between 0.0005 and 0.05. Since the point delay s is called the
regenerative delay, we refer to the additional r-long distributed
delay as the short regenerative delay, while its influence on the
dynamics of the process is called the short regenerative effect.

We now write Eqs. (11) and (12) in dimensionless form. We
introduce the dimensionless time ~t ¼ xnt, and replace temporal
derivatives by dimensionless ones indicated by prime according to
the rule _w ¼ dw=dt ¼ xndw=d~t ¼ xnw0

. In a similar manner,
we introduce the dimensionless delays ~s ¼ xns and ~r ¼ xnr,
as well as the dimensionless local temporal coordinate
~h ¼ xnh; ~h 2 ½�~r; 0�. We also rescale w(h) as ~wð~hÞ ¼
wðxnhÞ=xn and n(t) as ~nðtÞ ¼ nðtÞ=h0. After dropping the tilde
the governing equation reads

n00ðtÞ þ 2fn0ðtÞ þ nðtÞ

¼ p

ð0

�r
½ðnðt� sþ hÞ � nðtþ hÞÞ

þ g2ðnðt� sþ hÞ � nðtþ hÞÞ2

þg3ðnðt� sþ hÞ � nðtþ hÞÞ3�wðhÞdh (16)

where p ¼ k1=ðmx2
nÞ is the dimensionless chip width being pro-

portional to the actual chip width ap. The dimensionless cutting-
force coefficients g2 and g3 are expressed in the form

g2 ¼
k2

k1

h0 ¼
� 1

8
Taylor force

q2h0 þ 3q3h2
0

q1 þ 2q2h0 þ 3q3h2
0

Tobias force

8>>><
>>>:

(17)

g3 ¼
k3

k1

h2
0 ¼

5

96
Taylor force

q3h2
0

q1 þ 2q2h0 þ 3q3h2
0

Tobias force

8>>><
>>>:

(18)

Note that the coefficients g2 and g3 are functions of the mean chip
thickness h0 only in the case of the Tobias force. They are con-
stant for the Taylor force.

The linear part of Eq. (16) has already been introduced in Ref.
[7], and a nonlinear equation corresponding to Eq. (16) without

Fig. 3 Distribution of the shear stress along the rake face of
the tool
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distributed delay but with point delay was investigated in Ref.
[24]. Secs. 3–5 discuss the stability and bifurcation analysis of Eq.
(16) where both the nonlinearity and the distributed delay term
are included.

3 Linear Stability Analysis

Linearizing Eq. (16) around the trivial solution n(t)� 0 yields

n00ðtÞ þ 2fn0ðtÞ þ nðtÞ

¼ p

ð0

�r
½nðt� sþ hÞ � nðtþ hÞ�wðhÞdh

(19)

The stability of Eq. (19) was analyzed in Ref. [7]. It was shown
that an Hopf bifurcation occurs at the stability boundaries, which
gives rise to oscillations at a well-defined dimensionless angular
frequency x. Note that a fold bifurcation cannot happen in this
system. In Ref. [7], the D-subdivision method was used to derive
the linear stability boundaries, which are parameterized by

w ¼ xs (20)

Note that parameter w has physical meaning: it represents the
phase shift between the waves on the machined surface cut
momentarily and those cut one revolution ago. The stability boun-
daries can be given in the form

x wð Þ ¼ �f
R0 wð Þ
S0 wð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 R2

0 wð Þ
S2

0 wð Þ þ 1

s

pst wð Þ ¼ � 2fx wð Þ
S0 wð Þ

X wð Þ ¼ 2p
s wð Þ ¼

2px wð Þ
w

(21)

where R0(w) and S0(w) are the following integral terms:

R0 wð Þ ¼
ð0

�r
cos xhð Þ � cos x h� sð Þð Þ½ �w hð Þdh ¼ x2 wð Þ � 1

pst wð Þ

S0 wð Þ ¼
ð0

�r
sin xhð Þ � sin x h� sð Þð Þ½ �w hð Þdh ¼ � 2fx wð Þ

pst wð Þ
(22)

The D-curves in Eq. (21) can be depicted on the plane of the
dimensionless angular velocity X and dimensionless chip width p,
resulting in so-called stability lobe diagrams or stability charts.
For X¼ 0 and p¼ 0 no cutting takes place, hence these lines are
always part of the stable region. The linear stability charts will be
presented later in Fig. 4 together with the global stability
boundaries.

From this point on, we investigate the Hopf bifurcation and
consider the system at the stability boundary (21). For the sake of
simplicity, we omit the argument w. We use the dimensionless
chip width p as a bifurcation parameter and denote its value at the
linear stability boundary by pst. First, we show that there is indeed
an Hopf bifurcation at the stability boundaries. For this step, we
analyze the eigenvalues (or characteristic exponents) of Eq. (19),
which are the roots of the characteristic function

DðkÞ ¼ k2 þ 2fkþ 1þ p

ð0

�r
½ekh � ekðh�sÞ�wðhÞdh (23)

The system is asymptotically stable if all the infinitely many
eigenvalues lie in the negative half of the complex plane, whereas
at the stability boundaries two eigenvalues k¼6ix lay on the
imaginary axis. The linear stability analysis reviewed in this sec-
tion has already been published in Ref. [7]. In order to extend the
analysis of Ref. [7], now we investigate the conditions of an Hopf
bifurcation. According to Refs. [25,26], a necessary condition for
an Hopf bifurcation is that the critical eigenvalues of the system
cross the imaginary axis with nonzero speed as the bifurcation pa-
rameter p is increased. Hence, the real part of the critical

Fig. 4 Stability charts of the nonlinear turning model with cutting-force distribution (8) show-
ing the linear stability boundaries (solid line), and the analytically estimated (dashed line) and
numerically determined (dashed-dotted line) boundaries of the bistable region
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characteristic exponents must change with p, which implies that
the following derivative must be nonzero:

c ¼ Re
dk
dp

����
k¼ix

" #
¼ Re � @D

@k

� ��1
@D

@p

����
k¼ix

" #

¼ �R0q1 þ S0q2

q2
1 þ q2

2

¼ � 4pf x2 þ 1ð Þx
pstX

2 q2
1 þ q2

2

� � dX
dw

(24)

where

q1 ¼ pst

w
x

dS0

dw
þ 2f ; q2 ¼ �pst

w
x

dR0

dw
þ 2x (25)

Consequently, an Hopf bifurcation exists when
c 6¼ 0() dX=dw 6¼ 0. This condition was checked numerically
for each case study of this paper and it was found that c> 0 along
the stability lobes for pst> 0. According to the Hopf bifurcation
theorem, this implies that a periodic orbit exists in the vicinity of
the equilibrium of the nonlinear system. In order to determine the
stability and amplitude of this periodic orbit, we reduce the criti-
cal infinite-dimensional system to a finite dimensional center
manifold and carry out normal form calculations in Sec. 4.

4 Center Manifold Reduction

The subsequent analysis is based on the theory of functional
differential equations summarized in Ref. [27] and follows the
steps of Refs. [24,28], where the orthogonal cutting model was
considered with a concentrated cutting force. Note that the con-
centrated cutting-force model is a special case of the distributed
one with Dirac delta kernel function. Now we extend the results
of Refs. [24,28] and present the bifurcation analysis for a general
kernel function. As the first step of the analysis, we write Eq. (16)
in the first-order form

y0ðtÞ ¼ LyðtÞ þ R

ð0

�r
½yðt� sþ hÞ � yðtþ hÞ�wðhÞdhþ gðytÞ

(26)

where y(t) is the vector of state variables, L and R are the linear
and the retarded coefficient matrix, and g(yt) contains all nonlin-
ear terms. These quantities are defined as

yðtÞ ¼
nðtÞ
n0ðtÞ

" #
; L¼

0 1

�1 �2f

" #
; R¼

0 0

p 0

" #

gðytÞ ¼
0

g2ðytÞ

" #
; g2ðytÞ ¼ p

ð0

�r
½g2ðy1ðt� sþ hÞ � y1ðtþ hÞÞ2

þg3ðy1ðt� sþ hÞ � y1ðtþ hÞÞ3�wðhÞdh (27)

where y1(t)¼ n(t) is the first component of y(t).
As the phase space of delay-differential equations is infinite-

dimensional [27,29], we represent the state of the tool by yt

defined in the Hilbert space H of continuously differentiable
vector valued functions: yt 2 H : ½�r� s; 0� ! R2; ytð#Þ
¼ yðtþ #Þ. Accordingly, we characterize the evolution of the sys-
tem in H by formulating the operator differential equation corre-
sponding to Eq. (26)

y0tð#Þ ¼ Ayt þFðytÞ (28)

where A;F : H ! H are the linear and the nonlinear operators,
respectively

Au¼
uoð#Þ if# 2 ½�r� s;0Þ

Luð0ÞþR

ð0

�r
½uðh� sÞ�uðhÞ�wðhÞdh if#¼ 0

8<
:

(29)

FðuÞ ¼ 0 if # 2 ½�r� s; 0Þ
gðuÞ if # ¼ 0

�
(30)

Here, the notation wo ¼ dw=d# is used for the derivative with
respect to #.

At the stability boundaries all eigenvalues have negative real
parts except the critical pair k¼6ix, thus a two-dimensional crit-
ical subsystem embedded in the infinite-dimensional phase space
(the so-called center manifold) attracts exponentially all the solu-
tions of the differential equation. From a stability point of view, it
is enough to study the flow on the center manifold. Therefore, we
separate the center subspace from the stable one using the decom-
position theorem of Ref. [27] (see Eqs. (3.10) and (3.11) in Chap.
7). By decomposing H with respect to the critical eigenvalues
k¼6ix, we can obtain a form similar to the Jordan canonical
form of ordinary differential equations (see later Eq. (44)). This
way a two-dimensional ordinary differential equation can be ana-
lyzed separately instead of an infinite-dimensional delayed
system.

Since the center manifold is tangent to the plane spanned by the
real and imaginary parts of the critical eigenfunctions (infinite-
dimensional eigenvectors) of A, we first calculate these eigenvec-
tors, and then continue with the decomposition theorem of Ref.
[27]. The critical eigenvectors s1,2(#) are defined by

As1;2ð#Þ ¼ 6ixs1;2ð#Þ (31)

Substituting A from Eq. (29), writing s1;2ð#Þ ¼ sRð#Þ6isIð#Þ, and
decomposing Eq. (31) into real and imaginary parts yields the
boundary value problem

soð#Þ ¼ B4�4sð#Þ ; # 2 ½�r� s; 0Þ (32)

L4�4sð0Þ þ R4�4

ð0

�r
½sðh� sÞ � sðhÞ�wðhÞdh ¼ B4�4sð0Þ (33)

where

sð#Þ ¼ sRð#Þ
sIð#Þ

	 

; B4�4 ¼

0 �xI

xI 0

	 


L4�4 ¼
L 0

0 L

	 

; R4�4 ¼

R 0

0 R

	 

jp¼pst

(34)

with I and 0 denoting the 2� 2 identity and zero matrices, respec-
tively. The solution of Eq. (32) has the form sð#Þ ¼ eB4�4#c. The
constant c ¼ ½c11 c12 c21 c22�T can be determined from Eq. (33).
With the arbitrary choice c11¼ 1 and c21¼ 0, we get

sRð#Þ ¼
cosðx#Þ
�x sinðx#Þ

	 

; sIð#Þ ¼

sinðx#Þ
x cosðx#Þ

	 

(35)

The decomposition theorem of Ref. [27] also uses the so-called
left eigenvectors, which are the eigenvectors of the operator AH

being formally adjoint to A relative to a certain bilinear form. The
formal adjoint AH : HH ! HH must satisfy

ðv;AuÞ ¼ ðAH
v;uÞ (36)

where u 2 H : ½�r� s; 0� ! R2 and v 2 HH : ½0;rþ s� !
R2; HH is the adjoint space. The operation ð; Þ : HH �H ! R
indicates the bilinear form. The definition of the formal adjoint
and the bilinear form can be found in Ref. [27] (see Eqs. (3.1) and
(3.3) in Chap. 7), and here they read
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AH
v¼

�voð#Þ if#2ð0;rþs�

LHvð0ÞþRH

ð0

�r
½vðs�hÞ�vð�hÞ�wðhÞdh

if#¼0

8>><
>>:

(37)

ðu; vÞ ¼ uHð0Þvð0Þ þ
ð0

�r

ð0

�h
uHð#ÞðRwðhÞÞvð#þ hÞd#dh

�
ð�s

�r�s

ð0

�h
uHð#ÞðRwðsþ hÞÞvð#þ hÞd#dh (38)

where the superscript H of R, L, and u refers to conjugate
transpose.

As the eigenvalues of AH are complex conjugates to those of
A, the left eigenvectors n1;2ðuÞ satisfy

AH
n1;2ðuÞ ¼ 7ixn1;2ðuÞ (39)

We determine n1;2ðuÞ ¼ nRðuÞ6inIðuÞ the same way as we com-
puted s1;2ðuÞ. This time, however, we cannot choose the coeffi-
cients of nR;IðuÞ arbitrarily as we did for sR;Ið#Þ by taking c11¼ 1
and c21¼ 0, because, in order to apply the decomposition theorem
of Ref. [27], the following orthonormality condition must be
satisfied:

ðnR; sRÞ ¼ 1 ; ðnR; sIÞ ¼ 0 (40)

Finally, we get the left eigenfunctions in the form

nR uð Þ¼
2

q2
1þq2

2

2fq1þxq2ð Þcos xuð Þþ xq1�2fq2ð Þsin xuð Þ
q1 cos xuð Þ�q2 sin xuð Þ

" #

nI uð Þ¼
2

q2
1þq2

2

�xq1þ2fq2ð Þcos xuð Þþ 2fq1þxq2ð Þsin xuð Þ
q2 cos xuð Þþq1 sin xuð Þ

" #

(41)

According to Ref. [27], we decompose the solution space as

ytð#Þ ¼ z1ðtÞsRð#Þ þ z2ðtÞsIð#Þ þ ytnðtÞð#Þ (42)

where z1(t) and z2(t) are local coordinates on the center manifold
introduced to describe the behavior of the critical subsystem,
whereas ytn(t) accounts for the remaining infinite-dimensional
subsystem with coordinates perpendicular to the center manifold.
The decomposition theorem gives the formula of the different
components

z1ðtÞ ¼ ðnR; ytÞ
z2ðtÞ ¼ ðnI; ytÞ

ytnðtÞð#Þ ¼ ytð#Þ � z1ðtÞsRð#Þ � z2ðtÞsIð#Þ
(43)

Differentiating these expressions with respect to time and using
Eqs. (28), (42), and (31), the following differential equation can
be obtained:

z01
z02
y0tn

2
64

3
75 ¼

0 x O
�x 0 O
o o A

2
64

3
75

z1

z2

ytn

2
64

3
75

þ
nR2ð0ÞF 2ð0Þ
nI2ð0ÞF 2ð0Þ

�nR2ð0ÞF 2ð0ÞsR � nI2ð0ÞF 2ð0ÞsI þ F

2
64

3
75 (44)

where o : R! H and O : H ! R are zero operators, and sub-
script 2 indicates the second component of vectors.

Note that the two-dimensional critical subsystem is decoupled
linearly in Eq. (44), but there is still a coupling through the

nonlinear term F 2ð0Þ. In order to fully decouple the critical sub-
system and to obtain it in a third-order normal form, F 2ð0Þ should
be expressed in terms of z1 and z2 up to third order, which requires
a second-order approximation of the center manifold itself

ytn #ð Þ ¼
1

2
h1 #ð Þz2

1 þ 2h2 #ð Þz1z2 þ h3 #ð Þz2
2

� �
(45)

The coefficients h1ð#Þ; h2ð#Þ, and h3(#) can be calculated as
follows. First we differentiate Eq. (45) with respect to time and
substitute the rows of Eq. (42) to express the temporal derivatives.
Then, we consider the case # � [–r – s, 0) and substitute the defi-
nitions (29) and (30) of A and F accordingly. We also substitute
the derivative of Eq. (45) with respect to #. Thereafter, we use a
second-order approximation of F 2ð0Þ as

F 2ð0Þ � F1z2
1 þ F2z1z2 þ F3z2

2 (46)

Finally, we collect the coefficients of the second-order terms of z1

and z2 and consider a polynomial balance. This way we end up
with the differential equation

hoð#Þ ¼ C6�6hð#Þ þ p cosðx#Þ þ q sinðx#Þ (47)

where

h #ð Þ ¼
h1 #ð Þ
h2 #ð Þ
h3 #ð Þ

2
64

3
75; C6�6 ¼

0 �2xI 0

xI 0 �xI

0 2xI 0

2
64

3
75

p ¼ 2

q2
1 þ q2

2

2q1F1

2q2xF1

q1F2

q2xF2

2q1F3

2q2xF3

2
6666666664

3
7777777775
; q ¼ 2

q2
1 þ q2

2

2q2F1

�2q1xF1

q2F2

�q1xF2

2q2F3

�2q1xF3

2
6666666664

3
7777777775
(48)

The solution of Eq. (47) is of the form

hð#Þ ¼M cosðx#Þ þ N sinðx#Þ þ eC6�6#K (49)

Matrices M and N can be obtained by substituting the trial solu-
tion (49) back into Eq. (47) and considering a harmonic balance.
In order to calculate K, we return to Eq. (45), differentiate it with
respect to time, and substitute the rows of Eq. (42) as before. This
time, however, we consider #¼ 0, and substitute the definitions
(29) and (30) of A and F accordingly. Using the second-order
approximation (46), a polynomial balance of the second-order
terms of z1 and z2 yields the boundary condition

P6�6hð0Þ þ R6�6

ð0

�r
½hðh� sÞ � hðhÞ�wðhÞdh ¼ pþ r (50)

where

R6�6 ¼
R 0 0

0 R 0

0 0 R

2
64

3
75; L6�6 ¼

L 0 0

0 L 0

0 0 L

2
64

3
75

P6�6 ¼ L6�6 � C6�6 ; r ¼ �½ 0 2F1 0 F2 0 2F3 �T

(51)

After substituting the trial solution (49) into the boundary condi-
tion (50) we can find K. Then, the coefficients h1(#), h2(#), and
h3(#) can be given according to Eq. (49), where the second-order
approximation (45) of the center manifold is obtained.
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Using Eqs. (42) and (45), we can obtain a third-order approxi-
mation of the nonlinear terms in the first two rows of Eq. (44),
where we get the critical subsystem in the third-order normal form

z01
z02

	 

¼ 0 x
�x 0

	 

z1

z2

	 

þ

X
jþk¼2;3

ajkzj
1zk

2X
jþk¼2;3

bjkzj
1zk

2

2
664

3
775 (52)

Thereafter, the bifurcation analysis and the calculation of periodic
orbits can be performed on the two-dimensional system (52)
instead of the infinite-dimensional one (28).

5 Estimation of the Bistable Region

We can determine the criticality of the Hopf bifurcation, that is,
the stability of periodic orbits, based on the sign of the
Poincar�e–Lyapunov constant (PLC) given by [25]

D ¼ 1

8x
a20 þ a02ð Þ �a11 þ b20 � b02ð Þ

�
þ b20 þ b02ð Þ b11 þ a20 � a02ð Þ�

þ 1

8
3a30 þ a12 þ b21 þ 3b03ð Þ (53)

which gives

D ¼ 1� cos wð Þpstc
2

3g3 � dg2
2

� �
(54)

d ¼ 1� S0q1 � R0q2

�R0q1 � S0q2

2pst 4fxR02 þ 4x2 � 1ð ÞS02

� ��
þ p2

st R2
02 þ S2

02

� �
� 4x2 � 1ð Þ2 � 4fxð Þ2

i
� 1

pstR02 � 4x2 � 1ð Þ
� �2 þ pstS02 þ 4fx½ �2

(55)

where R02(w)¼R0(2w) and S02(w)¼ S0(2w).
The bifurcation is subcritical when the PLC is positive and

supercritical when it is negative. It was shown in Ref. [24] that the
Hopf bifurcation is subcritical for the special case of concentrated
cutting force with Dirac delta kernel. Here, we determined the
PLC numerically for several case studies by plotting D(w). We
encountered no supercritical case, which indicates that the subcrit-
ical nature of machining processes is preserved for realistic
cutting-force distributions.

The subcritical Hopf bifurcation gives rise to an unstable peri-
odic orbit around the linearly stable equilibrium, hence the equi-
librium has a finite domain of attraction. Once a perturbation
(e.g., material inhomogeneity, external excitation) moves the sys-
tem out of this domain, the resulting vibrations do not settle
down, but grow in amplitude until the tool leaves the workpiece
material resulting in chatter. Outside the cut the tool undergoes a
damped free oscillation, which limits the chatter amplitude, and
the tool gets back to the workpiece again. Hence, the large-
amplitude chatter with loss of contact is stable in the dynamical
sense [7]. Therefore, for certain set of parameters, stationary cut-
ting and large-amplitude chatter coexist. This parameter domain is
referred to as the region of bistability or unsafe zone.

In the bistable region, the amplitude of the arising periodic orbit
can be approximated [26] by

r w; pð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� c wð Þ

D wð Þ p� pst wð Þð Þ

s
(56)

It is important to emphasize the difference between the actual
bifurcation parameter value p and the stability limit pst(w). The

corresponding approximate periodic orbit and tool position
become

ytð#Þ � rðw; pÞ½cosðxtÞsRð#Þ � sinðxtÞsIð#Þ� (57)

nðtÞ ¼ y1ðtÞ ¼ yt1ð0Þ � rðw; pÞcosðxtÞ (58)

The unstable limit cycle exists only if the tool does not lose
contact with the workpiece during chatter. Once the amplitude of
the periodic orbit gets so large that loss of contact occurs, the
unstable periodic orbit vanishes as Eq. (16) is no longer valid.
Consequently, the region of bistability is limited by the so-called
switching line where the tool just loses contact with the work-
piece, that is, where the chip thickness h(t, h) drops to zero. Note
that this statement could be verified by the analysis of the non-
smooth system involving loss of contact between tool and work-
piece. The analysis of the nonsmooth dynamics, where also the
second row of Eq. (5) or (6) is taken into account, is out of scope
of this paper. We rely on the results of Ref. [30] where it was
shown for a concentrated cutting-force model that the boundary of
the bistable region is indeed given by the case where the unstable
periodic orbit touches the switching line. The dimensionless form
of Eq. (10) yields the switching condition

1þ nðt� sþ hÞ � nðtþ hÞ ¼ 0 (59)

Substituting the periodic solution (58), the switching condition
can be written in the form

1 ¼ rðw; pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cos wÞ2 þ sin2w

q
cos ðxðtþ hÞ þ /Þ (60)

where / is a phase shift. If there exists any pair of t and h such
that the switching condition is fulfilled, then loss of contact
happens and the periodic orbit disappears. In order to find the
smallest amplitude for which h(t, h)¼ 0 occurs, we write
cos ðxðtþ hÞ þ /Þ ¼ 1. Substituting the approximate amplitude
(56) and rearranging Eq. (60) for p, we get the boundary of the
bistable region in the form

pbist wð Þ ¼ � 1

2

D wð Þ
c wð Þ

1

1� cos w
þ pst wð Þ (61)

Therefore, the system is linearly but not globally stable (unsafe)
for pbistðwÞ � p < pstðwÞ, and it is globally stable for
0� p< pbist(w). The stability boundaries pst(w) and pbist(w) are
shown in Fig. 4 together with their numerically computed
counterparts.

6 Numerical Analysis

It is important to highlight that formulas (56)–(58) are approxi-
mations, thus Eq. (61) serves only as an estimation for the size of
the bistable region. In order to verify the accuracy of these results,
we analyze the stability of system (16) numerically using the con-
tinuation software DDE-BIFTOOL [9,10].

As a first step, we rescale Eq. (16) by introducing the scaled
time T such that t¼Ts. This step is necessary to avoid a badly
scaled system for small X, when s!1. Using T, Eq. (16) can be
written in the form

n00ðTÞ þ 2fsn0ðTÞ þ s2nðTÞ

¼ ps2

ð0

�e
½ðnðT � 1þ gÞ � nðT þ gÞÞ

þ g2ðnðT � 1þ gÞ � nðT þ gÞÞ2

þ g3ðnðT � 1þ gÞ � nðT þ gÞÞ3�swðsgÞdg (62)

where g¼ h/s and prime now denotes the derivative with respect
to T. Note that in Eq. (62) the delay is limited to a finite value
even when s!1.
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To use DDE-BIFTOOL, we approximate the distributed delay term
by a sum of f point delays as follows:

n00ðTÞ þ 2fsn0ðTÞ þ s2nðTÞ

�ps2
Xf

k¼1

h
ðnðT � 1� ĝkÞ � nðT � ĝkÞÞ

þg2ðnðT � 1� ĝkÞ � nðT � ĝkÞÞ2

þg3ðnðT � 1� ĝkÞ � nðT � ĝkÞÞ3
i
wk (63)

where

ĝk ¼ k � 1

2

� �
e
f
; wk ¼

ð� k�1ð Þe=f

�ke=f

sw sgð Þdg (64)

k¼ 1,…, f. Note that the term sw(sg) is independent of s, therefore
it is enough to calculate wk (and also ĝk) once, their values do not
change during the numerical continuation. For the numerical cal-
culations we used f¼ 20, which provided the linear stability boun-
daries with accuracy within linewidth.

We implemented Eq. (63) in DDE-BIFTOOL, and used numerical
continuation to determine the stability boundaries where the Hopf
bifurcation occurs. In each point of the boundaries, we computed
the amplitude of the arising periodic orbit by fixing X and varying
p. We also determined the corresponding periodic orbit itself, and
checked the switching condition (59) in a form scaled to T. Using
Newton’s method, we iterated the value of the bifurcation parame-
ter p until the switching condition was fulfilled. This way, we
determined the corresponding bistable limit for each point of the
Hopf stability boundaries. The analytical and numerical results
are summarized in Sec. 7.

7 Results and Discussion

Figure 4 shows a series of stability charts with the linearly and
globally stable parameter regions assuming f¼ 0.02, e¼ 0.05, and
a¼ 0.4. Four cases are considered: the Taylor force model and the
Tobias force expression with h0¼ 75, 110, 180 lm. The linear sta-
bility boundary at p¼ pst(w), where the Hopf bifurcation occurs,
is indicated by solid line. The boundary p¼ pbist(w) of the bistable
region according to the analytical estimation (61) is shown by a
dashed line, whereas its numerically computed counterpart is
denoted by dashed-dotted line. Note that in the top left chart of
the figure the dashed and dashed-dotted lines overlap, whereas in
the bottom left chart the dashed boundary flips to the half plane
p< 0.

It is known that the minima of the linear stability lobes lie on a
line p¼ constant for concentrated cutting force, see, e.g., Ref.
[31]. However, as shown in Fig. 4, it is not the case for the distrib-
uted cutting-force model, where the stability lobes shift upward in
case of low spindle speeds. Furthermore, the size of the bistable
region grows when the linearly stable region also does. Therefore,
we express the size of the bistable region relative to the size of the
linearly stable region

Dp wð Þ ¼ pst wð Þ � pbist wð Þ
pst wð Þ ¼ 3

4
g3 �

1

4
d wð Þg2

2 (65)

Investigating the parameter ranges f¼ 0.001–0.2 and
e¼ 0.001–0.2, we found that the magnitude of jdðwÞj is around
10�5 to 10�2 irrespective of the kernel shape given by a¼ 0–1.
Thus, the term dðwÞg2

2 is negligible compared to 3g3, and we end
up with a very simple analytical estimate for the size of the bista-
ble region

Dpest ¼
3

4
g3 ¼

3q3h2
0

4q1 þ 8q2h0 þ 12q3h2
0

(66)

Note that after omitting d(w), we get the same size for the bistable
region irrespective of both the spindle speed X and the shape w(h)

of the cutting-force distribution. Consequently, the same estima-
tion works for concentrated cutting-force models as well, which
was also shown in Ref. [16].

In the case of the Taylor force (g3¼ 5/96), the formula gives
Dpest¼ 0.039. It is in good agreement with Refs. [24,28], where
the size of the bistable region was shown to be 4% at the notches
of the lobes for concentrated cutting force. In the case of the
Tobias force, the size of the bistable region depends on the mean
chip thickness h0 as shown in Fig. 5. Here, the analytical estimate
(66) is indicated by dashed line. We can see that Dpest peaks at a
critical mean chip thickness hcr, and tends to 25% for large h0.
According to Ref. [24], the critical mean chip thickness is
hcr¼�q1/q2¼ 113 lm. Around hcr the size of the bistable region
exceeds 100%, which shows that here the analytical estimation
loses accuracy, since formula (56) for the amplitude of periodic
orbits is valid only in the vicinity of the linear stability bounda-
ries. Therefore, we computed the size of the bistable region
numerically by DDE-BIFTOOL for several mean chip thickness values
h0, see the dots in Fig. 5. In the numerical analysis, we still found
that the size of the bistable region relative to the size of the line-
arly stable region is approximately constant along the stability
lobes for a fixed h0. The dots of Fig. 5 indicate the average size
along the second lobe as function of the mean chip thickness h0. It
can be seen that the location hcr of the peak remains the same, and
the limit value for large h0 is about 20%. We can also conclude
that the analytical estimation (66) gives good approximation only
for small mean chip thickness values (h0 � 60 lm).

Finally, we explain the difference between the analytical and
numerical results in Fig. 6. Here, the amplitude of periodic orbits

Fig. 5 Ratio of the size of the bistable region and the linearly
stable region assuming Tobias force (dashed line: analytical
estimate, dots: numerical results)

Fig. 6 Bifurcation diagram showing the amplitude of periodic
orbits in the vicinity of the parameter points A, B, and C in Fig.
4 (dashed line: analytical estimate, dashed-dotted line: numeri-
cal result)
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is presented in the vicinity of the parameter points A (X¼ 0.2025,
p¼ 0.0795), B (X¼ 0.2171, p¼ 0.0286), and C (X¼ 0.2343,
p¼ 0.0558) in the top right panel of Fig. 4. The analytical esti-
mate (56) is indicated by dashed line, its numerical counterpart is
denoted by dash-dot line. We can see that near the linear stability
boundaries at A, B, and C the analytical and numerical bifurcation
curves overlap. However, further away from A, B, and C, the
curves deviate as the amplitude cannot be approximated accu-
rately by the square-root function (56). The inaccuracy of the esti-
mate (56) can be explained as follows. For p¼ 0, the right-hand
side of the governing equation (16) disappears, and the system
reduces to a damped oscillator, which cannot exhibit periodic sol-
utions. Therefore, the bifurcation curves should not cross the line
p¼ 0. This property is clearly not satisfied by the square-root
function in Eq. (56). On the other hand, the numerical results
show that the amplitude r of the periodic solutions tends to infinity
as p! 0, i.e., no periodic solution is possible at p¼ 0. The small-
est amplitude where the switching condition is fulfilled is shown
by a horizontal line. The points where the bifurcation curves cross
the horizontal lines are indicated by a, b, c, and a, b, c in the ana-
lytical and numerical case, respectively. The difference between
the analytical estimation and the numerical results becomes large
if these points lie far from the linear stability boundaries, that is,
when the bistable region is large. Note that beyond these points
the bifurcation curves are not depicted, since they are not valid as
loss of contact occurs between the tool and the workpiece.

8 Conclusions

We can conclude that the cutting-force distribution along the
tool’s rake face has an important effect on the stability of the
machining process: it increases the linearly stable region at small
spindle speeds. Therefore, this so-called short regenerative effect
allows chatter-free operation for larger depth of cut, by which the
material removal rate of low-speed cutting processes can be
improved. Mathematically, the short regenerative effect is repre-
sented by a distributed delay term in the governing equations of
the system, where a short distributed delay is superimposed on the
regenerative delay. The added delay accounts for the seemingly
unimportant fact that the chip needs a certain amount of time to
slip along the tool’s rake face. Both analytical estimations and nu-
merical results show that such a small effect makes qualitative
changes in the dynamic behavior of the system.

Moreover, through the analytical and numerical bifurcation
analysis of the governing delay-differential equation with distrib-
uted delay, we have shown that orthogonal cutting processes are
subcritical for realistic cutting-force distributions even at small
cutting speeds where the distributed nature of the cutting force is
relevant. No formal proof was given for the existence of an Hopf
bifurcation and for its subcritical sense; however, the crossing
speed of the characteristic exponents and the PLC has been
derived analytically, and their values were evaluated numerically
for several parameter combinations. All the numerical results veri-
fied the existence of a subcritical Hopf bifurcation.

Accordingly, there exists a bistable region near the linear stabil-
ity boundaries, where stable stationary cutting and large-
amplitude chatter coexist. The size of the bistable region depends
on the characteristics of the cutting force. If the cutting-force
characteristics is given by a power law (Taylor force), then the
bistable region is thin, it occupies only 4% of the linearly stable
region, and its size does not depend on the feed h0 per revolution.
The bistable region is significantly larger and is feed-dependent
for a cubic cutting-force characteristics (Tobias force). The exis-
tence of an inflection point in the cubic characteristics (q2< 0)
further increases the size of the bistable region, see Eq. (66).
Nevertheless, as the boundary of the bistable region follows the
linear stability boundary, it is still reasonable to operate the sys-
tem in one of the peaks of the linear stability lobe diagrams.
Besides, in the case of inflected cutting-force characteristics, the
size of the bistable region peaks for a critical feed per revolution.

Therefore, this feed per revolution range should be avoided in
order to decrease the possibility of large-amplitude vibrations
within the linearly stable parameter region.

Finally, note that uncertainties in the parameters of the cutting
force magnitude and distribution affect both the linear stability
boundaries and the size of the bistable region. Therefore, the accu-
racy of the analysis depends on the accuracy of the parameters in
the cutting-force model, and the results are valid only for narrow
spindle speed ranges where these parameters do not change
significantly.
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